Objective To produce population projections of African countries based on average pace of fertility decline observed during fertility transitions in national populations.

Basic Assumptions: a) fertility transition in all African countries is now underway; b) fertility decline will proceed at average historical pace observed during historical fertility transitions in national populations.

Model We assume that a) pace of fertility decline $d_{c,t}$ depends only on the current fertility level in a country if a country had entered fertility transition and b) that the functional form d_{ct} is the same for all countries:

$$d_{c,t} = d(TFR_{c,t})$$

The model rests on assumption that the past fertility trends in a country before the fertility transition have no influence on the future fertility trends—after having entered the fertility transition stage fertility decline will proceed at a historical pace observed in the countries that have passed through their fertility transitions.

Fertility Data UN fertility estimates, for 201 countries and for the period 1950-2015 from the 2015 revision of the World Population Prospects (WPP).

Acknowledgments The authors thank Ann Biddlecom and Ivan lachine for numerous discussions of this project Web appendix: Auxiliary material is available at http://kirillandreev.com/afrproj/

Population Projections

The estimated $d_{c,t} \sim spline(TFR_{c,t})$ was applied to TFR in 2010-2015 to project fertility through 2100. Assumptions about the rest of demographic components are consistent with the 2015 WPP Revision.

 $\overleftarrow{\mathbf{4}}$

P(20

Population Projections of African Countries Based on Historical Rates of Fertility Decline

UN projected fertility decrements are below a) the decrements estimated by our model and b) the UN "world average". The UN model puts much more weight on the historical → (SSP2) IIASA Historical Pace of Fertility Decline trends in the individual African countries rather than on the data on fertility transitions 2010 2090 2030 ²⁰⁵⁰ Year ²⁰⁷⁰

Disclaimer : The views expressed here do not imply the expression of any opinion on

				Year	Fertility	2015	SSP2
					Transition	WPP	(IIASA)
ertility Decline				2010	1.044	1.044	1.022
· · · · · · · · · · · · · · · · · · ·				2030	1.646	1.679	1.526
)80	2090	21	1	2050	2.273	2.478	2.017
			.00	2075	2.828	3.525	2.442
				2100	2.962	4.387	2.620
							/

worldwide. On average, this makes UN fertility is 0.5 child higher than our projection.